Как проверить твердость металла

Твердость материалов и методы ее измерения

Твердостью называют способность тела к пластическим деформациям под действием еще более твердого инструмента, называемого индентором.

Существует несколько популярных способов испытаний материалов и прежде всего металлов на твёрдость. При помощи них можно получить как некое численный эквивалент прочности изделия, так и данные по его сопротивлению знакопеременным нагрузкам.

К основным методикам определения относятся:

  1. 1. Метод Бринелля (приборы и сам процесс подробно будут описаны ниже). При его использовании твёрдость определяется при помощи отпечатка от твердого, чаще всего металлического шарика, вдавливаемого в ровную площадку детали. По диаметрам следов и судят о твердостях.

Рис.1 Внешний вид современного твердомера.

  1. 2. Способ Роквелла. По нему значение твёрдости равно относительной глубине вдавливания подобного, используемому по Бринеллю, шарика или алмазного конуса в площадку на поверхности изучаемой детали и обозначается чаще всего символами HR. Т.к. величина относительная, то максимальная величина твёрдости по Роквеллу составляет HR=100. «Роквелл» имеет широкое распространение при оценке качества рабочих узлов оборудования для переработки пластмасс и эластомеров, а также технологической оснастки.

  2. 3. Способ Виккерса. Подобен способу определения по Бринеллю, но при его применении используют четырёхгранную алмазную пирамиду и, соответственно, след, оставляемый ею. Численное значение твёрдости (обозначается как HV) в этом случае равно отношению нагрузки, приложенной к пирамиде, к площади следа от нее.

  3. 4. Твёрдость по Шору (метод вдавливания, обозначается Шор А, Шор D). Является важнейшим для определения твердости пластмасс, эластомеров и композитов. По нему величина твёрдости материала равно глубине проникновения в него специально подготовленной стальной иглы, которую приводит в напряжение калиброванная пружина. Прибором, работающим по методике Шора является дюрометр. Регулируемая международным стандартом ASTM D2240, процесс включает применение 12 шкал, однако на практике подавляющее количество более мягких материалов (например резин и эластомеров испытывают по шкале A), а более жестких (пластмасс и композитов) по шкале D.

  4. 5. Дюрометры и шкалы Аскер является еще одним способом, относящемуся к разработкам Шора, похожим по способу измерения на предыдущий. Он применяется для получения значения для мягких веществ, используется главным образом в Японии и имеет несущественные отличия от «Шора», например особенностями оборудования, шкал и инденторов.

  5. 6. Твёрдость по Шору (метод отскока). Применяется для получения значений твёрдости для очень твёрдых деталей, например металлических. Величина показателя (имеет обозначение HSx) находится по высоте отскока специального бойка, который падает со стандартной высоты.

  6. Кроме описанных основных способов существует еще набор более редких техник, например метод Кузнецова-Герберта-Ребиндера, методика Польди или двойного отпечатка шарика, определений по шкале Мооса, способ Бухгольца и т.п. В данной статье мы не будем рассматривать их подробнее и просим обращаться к специализированной литературе.

Косвенные методы

Косвенных методов всего два – ультразвуковой и динамический. Эти методы не напрямую измеряют твердость, а лишь оценивают значение твердости металла в зависимости от других физических свойств.

2.1. Измерение твердости ультразвуком

заключается в фиксации степени изменения (затухания) частоты колебаний стержня с закрепленным на конце индентором при внедрении в поверхность образца. Чем мягче металл, тем больше глубина проникновения индентора и, соответственно, площадь его контакта с металлом, тем выше степень затухания частоты колебаний (в ультразвуковом диапазоне). Метод практически не имеет ограничений по массе и размерам испытуемых изделий, оставляет едва заметный отпечаток, применим для измерения твердости поверхностно упрочненных слоев и изделий со сложной конструкцией (шестерни, подшипники, метизы и т.д.). Ограниченно применяется на изделиях с крупнозернистой структурой.

2.2. Динамический метод реализует зависимость скорости отскока твердого тела от твердости на поверхности соударения. Чем мягче металл, тем больше энергии удара уходит на формирование отпечатка (пластическая деформация) и тем меньше скорость отскока бойка с твердосплавным шариком. Динамический метод применим для крупных, массивных изделий с весом не менее 5 кг и толщиной стенки не менее 10 мм. Подходит для измерения твердости, в том числе и на литых изделиях. Менее чувствителен к качеству поверхности, чем ультразвуковой метод.

2.3. Оба косвенных метода получили распространение в виде портативных, электронных приборов. Измерение твердости переносным твердомером

основано на правильном выборе метода контроля (ультразвук или динамика) и использовании корректной калибровки прибора. Обычно портативные твердомеры изначально откалиброваны по стали на стальныхмерах твердости и имеют возможность пользовательской калибровки на других металлах и сплавах при наличии образцов с известной твердостью.


Преимущества переносных твердомеров NOVOTEST очевидны: мобильность, портативность, автономность, высокая скорость проведения измерений. Также стоит отметить наличие в электронных приборах возможности измерения твердости по нескольким шкалам, архивации и статистической обработки данных, связи с компьютером.

Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору

Указанные значения твердости по Роквеллу, Виккерсу и Шору соответствуют значениям твердости по Бринеллю, определенным с помощью шарика диаметром 10 мм.

По Роквеллу По Бринеллю По Виккерсу (HV) По Шору
HRC HRA HRB Диаметр отпечатка HB
65 84,5 2,34 688 940 96
64 83,5 2,37 670 912 94
63 83 2,39 659 867 93
62 82,5 2,42 643 846 92
61 82 2,45 627 818 91
60 81,5 2,47 616
59 81 2,5 601 756 86
58 80,5 2,54 582 704 83
57 80 2,56 573 693
56 79 2,6 555 653 79,5
55 79 2,61 551 644
54 78,5 2,65 534 618 76,5
53 78 2,68 522 594
52 77,5 2,71 510 578
51 76 2,75 495 56 71
50 76 2,76 492 549
49 76 2,81 474 528
48 75 2,85 461 509 65,5
47 74 2,9 444 484 63,5
46 73,5 2,93 435 469
45 73 2,95 429 461 61,5
44 73 3 415 442 59,5
42 72 3,06 398 419
40 71 3,14 378 395 54
38 69 3,24 354 366 50
36 68 3,34 333 342
34 67 3,44 313 319 44
32 67 3,52 298 302
30 66 3,6 285 288 40,5
28 65 3,7 269 271 38,5
26 64 3,8 255 256 36,5
24 63 100 3,9 241 242 34,5
22 62 98 4 229 229 32,5
20 61 97 4,1 217 217 31
18 60 95 4,2 207 206 29,5
59 93 4,26 200 199
58 4,34 193 192 27,5
57 91 4,4 187 186 27
56 89 4,48 180 179 25

Таблица сверл для отверстий под нарезание трубной цилиндрической резьбы.

Онлайн калькулятор для расчета режимов резания при точении.

Станки с ЧПУ

Классификация станков с ЧПУ, станки с ЧПУ по металлу для точения, фрезерования, сверления, расточки, нарезания резьбы, развёртывания, зенкерования.

CAD/CAM/CAE системы

Системы автоматизированного проектирования САПР, 3D программы для проектирования, моделирования и создания 3d моделей.

Чтение чертежей

Техническое черчение, правила выполнения чертежей деталей и сборочных чертежей.

Метод первопроходец. Звание заслуживает система определения твердости материалов, разработанная Августом Бринеллем. Это инженер из Швеции. Его метод стал первым стандартизированным и широко используемым. Шкалу Бринелля мир «взял на вооружение» в 1900-ом году. Разберемся, в чем суть системы, твердость каких материалов можно узнать с ее помощью, и есть ли у метода минусы.

Способы измерения твердости

Что характерно, испытание на твердость проводится чаще, чем определение всех остальных свойств материалов – прочности, относительного удлинения и прочих. Способов узнать, насколько тверда сталь или любой другой минерал, несколько. Но все они основываются на общем принципе: на испытываемый образец воздействуют другим объектом, прилагая определенное давление. Это может быть шарик, пирамида, пуансон.

Определение твердости производится по глубине внедрения и показателям давления. Минимальные усилия и большая глубина говорят о низких свойствах материала. Равносильно и наоборот, большие усилия и малая глубина – твердость высокая.

При этом испытания могут быть двух основных видов:

  • Статические.
  • Динамические.

Если контакт исследуемого образца и объекта происходит в течение определенного промежутка времени, то испытание носит статичный характер. В ином случае речь идет о динамичном способе определения твердости.

В настоящее время для определения твердости материалов применяют:

  • Метод Виккерса (ГОСТ 2999-75).
  • Метод Бринелля (ГОСТ 9012-59).
  • Метод Роквелла (ГОСТ 9013-59).
  • Метод Шора.
  • Метод Мооса.

Выбор того или иного испытания зависит от специфики применения деталей, необходимой точности результата, а также способности воспроизвести исследования при различных условиях.

Перевод единиц твердости по Роквеллу, Бринеллю и Виккерсу (таблица)

SVERLA.info » Статьи » Твердость – перевод единиц

Роквелл Бринелль Виккерс Шор На разрыв
HRA HRC HB (3000H) Диаметр отпечатка, мм HV HSD Н/мм²
89 72 782 2.20 1220
86.5 70 1076 101
86 69 744 2.25 1004 99
85.5 68 942 97
85 67 713 2.30 894 95
84.5 66 854 92
84 65 683 2.35 820 91
83.5 64 789 88
83 63 652 2.40 763 87
82.5 62 739 85
81.5 61 627 2.45 715 83
81 60 695 81 2206
80.5 59 600 2.50 675 80 2137
80 58 2.55 655 78 2069
79.5 57 578 636 76 2000
79 56 2.60 617 75 1944
78.5 55 555 598 74 1889
78 54 2.65 580 72 1834
77.5 53 532 562 71 1772
77 52 512 2.70 545 69 1689
76.5 51 495 2.75 528 68 1648
76 50 513 67 1607
75.5 49 477 2.80 498 66 1565
74.5 48 460 2.85 485 64 1524
74 47 448 2.89 471 63 1496
73.5 46 437 2.92 458 62 1462
73 45 426 2.96 446 60 1420
72.5 44 415 3.00 435 58 1379
71.5 42 393 3.08 413 56 1317
70.5 40 372 3.16 393 54 1255
38 352 3.25 373 51 1193
36 332 3.34 353 49 1138
34 313 3.44 334 47 1076
32 297 3.53 317 44 1014
30 283 3.61 301 42 965
28 270 3.69 285 41 917
26 260 3.76 271 39 869
24 250 3.83 257 37 834
22 240 3.91 246 35 793
20 230 3.99 236 34 752

Вдавливание алмазного конуса с углом 120° при вершине и замер относительной глубины погружения в исследуемый материал. 

Шкала А – нагрузка 60 кгс,  для карбида вольфрама (ВК)

Шкала С – нагрузка 150 кгс, для твердых сталей HRB>100

Преимущество – простота. Недостаток – низкая точность.

Твердость по Бринеллю

Диаметр отпечатка  металлического шарика в материале.

Недостаток – твердость до 450HB.

Твердость по Шору

Отскок шарика от поверхности в склероскопе (метод отскока). Очень простой и удобный метод.

Определение твердости материала является важной частью технологического процесса изготовления деталей любой сложности. Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы

Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину

Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы. Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину.

Лишь с помощью метода Виккерса удобнее всего искать твёрдость азотированных и цементированных поверхностей.

Расчет ресурса работы металлорежущего инструмента, его долговечность, всегда производится в первую очередь с учетом табличных показателей.

Именно благодаря повышенной твердости (около 71 HRC) твердосплавные сверла и фрезы из сплава ВК8 позволяют обрабатывать сверхтвердые материалы.

Способ Виккерса

Что такое твердость по Виккерсу? Суть данной методики заключается во вдавливании пирамиды, изготовленной из алмаза, в образец. У пирамидального индентора соотношение сторон должно быть строго определенным. В результате проведения испытания на исследуемом образце остается ромбовидный отпечаток, причем иногда он может быть неправильной формы.

Твердость обознается двумя латинскими буквами – HV — и устанавливается в зависимости от значения диагонали полученного ромба. Иногда используется среднее арифметическое значение обеих диагоналей.

Оборудование, с помощью которого измеряется твердость по Виккерсу, относится к статичному типу и может быть стационарным либо переносным. При этом сама процедура выполняется следующим образом:

  • Образец помещается на рабочий стол оборудования исследуемой поверхностью кверху. Затем она вместе со столом поднимается вверх до легкого соприкосновения с рабочим наконечником.
  • При помощи реле времени задается определенный час воздействия, после чего остается опустить рычаг, который приводит в действие нагружающий механизм. По окончании времени испытания нагрузка с детали снимается и наконечник возвращается в прежнее положение.
  • Оборудование оснащено отсчетным микроскопом, поэтому после завершения операции нужно развернуть стол с образцом к нему и измерить диагонали отпечатка.

В некоторых случаях твердость стали или любого другого материала по данной методике указывается со значением нагрузки. К примеру, такое обозначение HV50940 говорит о том, что твердость равна 940 единиц при воздействии нагрузки, равной 50 кг.

Достоинствами данного способа испытания являются:

  • Можно измерять детали практически с любой толщиной за счет малой площади поверхности, которую занимает индентор (самое крайнее положение).
  • Высокая точность результата, что обусловлено идеальной степенью твердости алмазного наконечника. Как следствие, сам он не подвержен деформации.
  • Диапазон измерений довольно широкий и способен охватывать как относительно непрочные металлы наподобие алюминия и меди, так и высокопрочные стали, сплавы.
  • Есть возможность определения твердости отдельно взятого слоя металлов. К примеру, образец прошел процесс цементации либо у детали изменен химический состав вследствие поверхностного упрочнения или легирования.

Как показывает практика, диапазон измерений твердости составляет от 145 до 1000 HV. Чтобы измерить твердость большой партии образцов, существует автоматизированное оборудование компании Reicherter из Германии, имеющее гидравлический или электромеханический привод. Расчет результата проводится автоматизировано, после чего выводится на монитор.

Оборудование для проведения измерения

На момент разработки рассматриваемой методики измерения твердости специального оборудования не было

После того, как в машиностроительной и других областях промышленности установили важность этой физико-механической характеристики, было разработано специальное оборудование, которое основано также на вдавливании шарика или конуса в тестируемый объект. Современное оборудование позволяет с высокой точностью контролировать величину прилагаемой силы и времени выдержки

Твердомером измеряется твердость, как правило, небольших объектов, являющимися образцами получаемой заготовки. Это связано с весьма компактными размерами большинства моделей рассматриваемых устройств.

Твердомер Роквелла

К особенностям применяемого оборудования можно отнести нижеприведенные моменты:

  1. Испытуемый образец, как правило, располагается на столике.
  2. Алмазный наконечник опускается с помощью грузового рычага.
  3. Важным моментом является то, что наконечник опускается плавно. Это достигается при применении рукоятки с масленым амортизатором.
  4. Время выдержки применимой нагрузки зависит от размеров испытуемого образца. Как правило, показатель составляет 3-6 секунд. Сила воздействия определяется также величиной заготовки.
  5. Важные параметры вводятся при помощи специального пульта программирования. За счет того, что контроль прилагаемой силы и время выдержки проводит оборудование, точность получаемых результатов довольно высока.

Рассматриваемое оборудование производится достаточно большим количеством различных компаний. При этом стоимость предложения может колебаться в достаточно большом диапазоне.

Методы проверки твердости металлов

Эксперты различают несколько вариантов проверок характеристики:

  • Согласно методу Бриннеля, в процессе проверки принимает участие стальной шарик. Его под большим давлением вдавливают в металлическую поверхность. Затем специальная лупа вступает в действие, и с ее помощью специалист замеряет диаметр лунки. Твердость определяется по табличным данным. Этот способ – первый метод определения характера металла. Так измеряются мягкие сплавы.
  • Методика Роквелла предполагает воздействие на металлическую поверхность с помощью алмазного конуса. В деле измерения твердости мягких, цветных, тонких Ме применяют специальный пресс. Его не относят к очень точным, хотя успешно он участвует для исследования твердых сплавов.
  • Аналогичные действия с предыдущим заложены в метод Викксера, предполагающий обращение к алмазной пирамиде, только угол вершины не 120, а 136 градусов. Нагрузка осуществляется в строго перпендикулярном виде к металлу и медленно увеличивается. Относится к высокоточным способам.
  • Способ Шора подразумевает наличие бойка с наконечником из алмазного напыления. Он падает с конкретной высоты на поверхность испытуемого материала. Твердость измеряется по высоте отскока бойка. Отличается эта методология большим разбросом показаний, по большей части применяется для измерения криволинейных предметов, крупногабаритных деталей.

В домашних условиях показатель также измеряется, но ожидать высокой точности не стоит. При обращении к профессионалам можно получить высокоточный результат, и это ответственный момент. Некоторые проводят домашний ликбез по определению этой величины, используя обычную бутылку и царапая по ней металлическим предметом, например, лезвием ножа. Металл в 62 единицы легко царапает стекло, чего не сказать о 56 единицах.

Насколько твердыми бывают основные металлы

Большинство материалов уже обладают определенными характеристиками, их давно измерили и записали в таблицы, при этом в сводках обозначены как исходные значения необработанного железа, так и после различных типов термо- и холодной металлообработки. Но при добавлении нестандартных и новых добавок, проведенных процедур необходимо заново измерять данный показатель. Но если вы сталкиваетесь со стандартными сплавами, то следует посмотреть в подготовленные списки.

Цветмет

Они более мягкие, чем черные, потому что в них нет твердых включений, а также их не подвергают закалке и прочим методам термообработки.

Титан составляет исключение. Приведем технологию, используемую Бриннелем:

Материал Особенности В нв
Медь Имеет высокую пластичность и низкую прочность. если добавляются специальные примеси, получаются новые марки, тогда показатель может увеличиваться. 35
Латунь Это двойной или многокомпонентный состав, который включает медь. но она более надежная, дополнительно включены цинк или олово. 42 – 60
Алюминий Может быть мягким или твердым, с увеличенной или уменьшенной пластичностью. 15 – 20
Дюралюминий Современный, легкий, активно применяется в авиастроении. есть добавки – медь, магний, марганец. 70
Титан Очень крепкий цветмет. 160

Черные металлы

Это железо и стали, ферросплавы и чугуны. Иногда к этой категории относят ванадий, марганец. Общая характеристика:

  • Способ получения – обработка железной руды.
  • Увеличенная прочность.
  • Невосприимчивость к механическим воздействиям.
  • Высокая износостойкость.
  • Хорошая свариваемость.
  • Невысокая стоимость.

Поэтому железо активно применяют. Нецелесообразно приводить полный список всех марок, поэтому только основные:

  • Чугун – 220 НВ.
  • Инструментальные стальные сплавы – до 700 НВ, из нее делаются режущие инструменты.
  • Нержавейка – до 250 НВ.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2 ),

  • гдеР – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:сплавы из железа — 30D 2 ;медь и ее сплавы — 10D 2 ;баббиты, свинцовые бронзы — 2,5D 2 .

Условное изображение принципа испытания

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Математическая формула для расчета:HV=0.189*P/d 2 МПаHV=1,854*P/d 2 кгс/мм 2 Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, мм HB HRA HRC HRB
2,3 712 85,1 66,4
2,5 601 81,1 59,3
3,0 415 72,6 43,8
3,5 302 66,7 32,5
4,0 229 61,8 22 98,2
5,0 143 77,4
5,2 131 72,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Нож на заказ

На большинство продукции в нашем магазине возможно нанесение инициалов, надписей, логотипов, фирменной символики.

Личный Кабинет

Осуществляется доставка по всем регионам Российской Федерации: Московская область, Самара, Челябинская область, Свердловская область (Екатеринбург), Уфа (Республика Башкортостан), Республика Татарстан, Курганская область, Тюменская область, Пермский край, Оренбургская область, Краснодарский край, Удмуртская Республика и далее – все регионы России. Наши менеджеры будут рады предоставить вам всю необходимую информацию.

Вся информация на сайте носит справочный характер и не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации. Технические параметры (спецификация) и комплект поставки товара могут быть изменены производителем.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Скольжение и дислокации.

Процессы скольжения удалось подробнее исследовать на монокристаллах металлов, выращенных в лаборатории. При этом выяснилось не только то, что скольжение происходит в некоторых определенных направлениях и обычно по вполне определенным плоскостям, но и то, что монокристаллы деформируются при очень малых напряжениях. Переход монокристаллов в состояние текучести начинается для алюминия при 1, а для железа – при 15–25 МПа. Теоретически же этот переход в обоих случаях должен происходить при напряжениях ок. 10 000 МПа

Такое расхождение между экспериментальными данными и теоретическими расчетами на протяжении многих лет оставалось важной проблемой. В 1934 Тейлор, Полани и Орован предложили объяснение, основанное на представлении о дефектах кристаллической структуры

Они высказали предположение, что при скольжении сначала происходит смещение в какой-то точке атомной плоскости, которое затем распространяется по кристаллу. Граница между сдвинувшейся и несдвинувшейся областями (рис. 4) представляет собой линейный дефект кристаллической структуры, названный дислокацией (на рисунке эта линия уходит в кристалл перпендикулярно плоскости рисунка). Когда к кристаллу прикладывается напряжение сдвига, дислокация движется, вызывая скольжение по плоскости, в которой она находится. После того как дислокации образовались, они очень легко движутся по кристаллу, чем и объясняется «мягкость» монокристаллов.

В кристаллах металлов обычно имеется множество дислокаций (общая длина дислокаций в одном кубическом сантиметре отожженного металлического кристалла может составлять более 10 км). Но в 1952 научные сотрудники лабораторий корпорации «Белл телефон», испытывая на изгиб очень тонкие нитевидные кристаллы («усы») олова, обнаружили, к своему удивлению, что изгибная прочность таких кристаллов близка к теоретическому значению для совершенных кристаллов. Позднее были обнаружены чрезвычайно прочные нитевидные кристаллы и многих других металлов. Как предполагают, столь высокая прочность обусловлена тем, что в таких кристаллах либо вообще нет дислокаций, либо имеется одна, идущая по всей длине кристалла.

Прямые методы

Это классические методы измерения твердости по Бринеллю

, по Роквеллу, по Виккерсу, по Шору, по Супер-Роквеллу. Твердость металлов измеряется или оценивается вединицах твердости . Принцип измерения твердости всеми прямыми методами вытекает из определения твердости – способности материала сопротивляться внедрению другого, более твердого тела. В качестве более твердого тела используются инденторы, изготавливаемые, например, из алмаза или карбида вольфрама и имеющие определенную форму –шарик, конус, пирамида.

Приборы для измерения твердости

прямыми методами являются стационарными установками, где к индентору, внедряющемуся в изделие или образец, прикладывается определенная нагрузка. Например, стационарный твердомер Роквелла NOVOTEST ТС-Р комплектуется двумя инденторами – шарик с диаметром 1.5875 мм и алмазная конусная пирамидка с углом 120°, прилагаемые испытательные нагрузки 60,100 и 150 кг.


После приложения нагрузки на поверхности образца остается отпечаток. Для каждого прямого метода определения твердости сформулирована зависимость для вычисления значения твердости по известным значениям приложенного усилия и определенным геометрическим параметрам отпечатка. Для метода Роквелла, к примеру, регистрируется глубина отпечатка.

Из достоинств прямых методов измерения твердости стоит отметить универсальность в отношении материала испытываемого образца. Стационарные твердомеры изначально готовы к измерению твердости любых металлов и сплавов без дополнительной калибровки. Недостатки – отсутствие мобильности, ограничение по размерам измеряемых изделии, наличие достаточно большого отпечатка, невысокий темп проведения замеров.

Методика измерения твердости по Бринеллю

В соответствии с рассматриваемой технологией значение твёрдости материала определяется как отношение усилия, применимого на шарик, к площади следа от него после удара о изучаемый образец

Важно, что указанная площадь рассчитывается как площадь сферической поверхности отпечатка, а не как площадь круга.. В соответствии с ГОСТ 9012-59 значение показателя пишется в числах без указания единиц измерения, хотя фактически единицей является кг-с/кв.мм

Твёрдость по Бринеллю обозначается как HB и применяется в основном для достаточно мягких металлических сплавов, цветных металлов, чугуна и незакалённой «сырой» стали.

В соответствии с ГОСТ 9012-59 значение показателя пишется в числах без указания единиц измерения, хотя фактически единицей является кг-с/кв.мм. Твёрдость по Бринеллю обозначается как HB и применяется в основном для достаточно мягких металлических сплавов, цветных металлов, чугуна и незакалённой «сырой» стали.

Для измерения твердости по методу Бринелля, как правило, используют шарик или из стали или из карбида вольфрама. Карбидный индентор предназначен для исследования особо твердых материалов, например инструментальных сталей и сплавов. Стальной индентор подходит к металлам с твердостью до стали общего назначения, а также нержавеющей стали, дерева, цветных металлов, стекла и т.д.

В приборах по определению твердости по Бринеллю, использующихся в настоящее время, существует возможность плавно вводить шарик в деталь, что дает очень низкую погрешность измерения, не превышающую 1 процента. Это позволяет получать ее с высокой степени не только точности, но и повторяемостью.

Шарики-инденторы, которые примеряются в составе устройств, имеют диаметр 1, 2,5, 5 и 10 миллиметров. Усилие внедрения шарика и его размер выбирается исходя из типа изучаемого материала.

Испытания по методу Бринелля имеют следующие ограничения и особенности, которые нужно учитывать при его выборе и применении:

  1. Неприменимы образцы, имеющие значение по Бринеллю более HB450/650 кгс/кв.мм.

  2. Поверхность исследуемой детали должна быть плоская и чистая со всех сторон. Любая деформация может привести к искажению результата.

  3. Диаметр каждого следа должен быть в интервале от 0,2 до 0,6 диаметра индентора.

  4. Критический размер для образца материала, взятого для оценки твердости по Бринеллю – толщина не менее 10 глубин отпечатка индентора.

  5. Расстояние от центра отпечатка до центра ближайшего следа должно быть 4 диаметра отпечатка или более.

  6. Время выдержки под нагрузкой – 10-15 секунд для стали и 10-180 с для цветных металлов и сплавов исходя из их твёрдости.

Важно отметить, что не допускается измерять одинаковые детали и сравнивать результаты, полученные на твердомерах разного типа. Также нельзя получить точную твердость по методу Бринелля в месте, находящемся вблизи кромки образца.. При использовании данных после измерения твердости по методу Бринелля нужно обозначать условия получения данных.

При использовании данных после измерения твердости по методу Бринелля нужно обозначать условия получения данных.

В случае, если твёрдость образца выше HB450, то метод Бринелля не подходит, ввиду возможной деформации поверхности шарика при таких свойствах исследуемого вещества.

В ходе испытаний размер следа от индентора измеряют, используя специальную лупу с шагом шкалы 0,05 мм, которая названа также именем Бринелля, по двум перпендикулярным осям. Также возможно использование микроскопа для получения более точных данных. За значение диаметра принимают среднее арифметическое из этих измерений.

Характеристики методики Виккерса

Определение твердости металлов по данному способу наиболее просто и точно. Работа твердомера основана на вдавливании в образец алмазного пирамидального наконечника.

  1. Индентор: алмазная пирамида с углом при вершине 136°.
  2. Предельно допустимая нагрузка: для легированного чугуна и стали – 5-100 кгс; для медных сплавов – 2,5-50 кгс; для алюминия и сплавов на его основе – 1-100 кгс.
  3. Период выдержки статической нагрузки: от 10 до 15 с.
  4. Испытуемые материалы: сталь и цветные металлы с твердостью более 450-500 НВ, в том числе изделия после химико-термической обработки.

где 700HV – число твердости по Виккерсу; 20 – нагрузка, 20 кгс; 15 – период статического усилия, 15 с.

Перевод единиц твердости по Роквеллу, Бринеллю и Виккерсу (таблица)

SVERLA.info » Статьи » Твердость – перевод единиц

Роквелл Бринелль Виккерс Шор На разрыв
HRA HRC HB (3000H) Диаметр отпечатка, мм HV HSD Н/мм²
89 72 782 2.20 1220
86.5 70 1076 101
86 69 744 2.25 1004 99
85.5 68 942 97
85 67 713 2.30 894 95
84.5 66 854 92
84 65 683 2.35 820 91
83.5 64 789 88
83 63 652 2.40 763 87
82.5 62 739 85
81.5 61 627 2.45 715 83
81 60 695 81 2206
80.5 59 600 2.50 675 80 2137
80 58 2.55 655 78 2069
79.5 57 578 636 76 2000
79 56 2.60 617 75 1944
78.5 55 555 598 74 1889
78 54 2.65 580 72 1834
77.5 53 532 562 71 1772
77 52 512 2.70 545 69 1689
76.5 51 495 2.75 528 68 1648
76 50 513 67 1607
75.5 49 477 2.80 498 66 1565
74.5 48 460 2.85 485 64 1524
74 47 448 2.89 471 63 1496
73.5 46 437 2.92 458 62 1462
73 45 426 2.96 446 60 1420
72.5 44 415 3.00 435 58 1379
71.5 42 393 3.08 413 56 1317
70.5 40 372 3.16 393 54 1255
38 352 3.25 373 51 1193
36 332 3.34 353 49 1138
34 313 3.44 334 47 1076
32 297 3.53 317 44 1014
30 283 3.61 301 42 965
28 270 3.69 285 41 917
26 260 3.76 271 39 869
24 250 3.83 257 37 834
22 240 3.91 246 35 793
20 230 3.99 236 34 752

Вдавливание алмазного конуса с углом 120° при вершине и замер относительной глубины погружения в исследуемый материал. 

Шкала А – нагрузка 60 кгс,  для карбида вольфрама (ВК)

Шкала С – нагрузка 150 кгс, для твердых сталей HRB>100

Преимущество – простота. Недостаток – низкая точность.

Твердость по Бринеллю

Диаметр отпечатка  металлического шарика в материале.

Недостаток – твердость до 450HB.

Твердость по Шору

Отскок шарика от поверхности в склероскопе (метод отскока). Очень простой и удобный метод.

Определение твердости материала является важной частью технологического процесса изготовления деталей любой сложности. Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы

Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину

Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы. Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину.

Расчет ресурса работы металлорежущего инструмента, его долговечность, всегда производится в первую очередь с учетом табличных показателей.

Именно благодаря повышенной твердости (около 71 HRC) твердосплавные сверла и фрезы из сплава ВК8 позволяют обрабатывать сверхтвердые материалы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector